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The experiment of Champagne, Harris & Corrsin in generating and studying a nearly 
homogeneous turbulent shear flow has been extended to larger values of the dimension- 
less downstream time or strain by the use of a larger mean velocity gradient in the 
same wind tunnel. The system appears to reach an asymptotic state in which scales and 
turbulent energy grow monotonically. Two-point covariances and tensor structure of 
one-point ‘ Reynolds stress ’ and ‘ pressure/strain-rate covariance ’ agree with the earlier 
case. However, the linear intercomponent energy exchange hypothesis due to Rotta, 
very roughly confirmed by the earlier experiment, is contradicted by the present data. 

1. Introduction 
For reasons mentioned by Champagne, Harris & Corrsin (1970, to be identified 

as CHC in this paper), especially to avoid the complicating effects of boundaries, it is 
interesting to study an infinitely extended turbulent shear flow with constant mean 
velocity gradient. This is unattainable experimentally, but a good approximation to 
transverse uniformity can be obtained (Rose 1966; CHC 1970; Mulhearn & Luxton 
1970, 1975). The reader is referred to CHC for a brief survey of relevant work prior 
to 1970. 

Experimentally, Rose generated a linear turbulent shear flow using a plane grid of 
parallel rods of uniform diameter and non-uniform spacing. CHC (1970), Rose (1970), 
Mulhearn & Luxton (1970,1975) and Hwang (1971) generated shear flows of improved 
lateral homogeneity with mean strain rates approximately equal to that of Rose (1966). 

The purpose of the present experimental study was to generate a higher mean strain 
rate than that obtained previously, especially to try to attain a larger effective flow 
development time. A ‘paradox ’ of the first two investigations centred upon the fact 
that the turbulent energy appeared to reach a steady asymptotic state, while both 
the integral scales and the microscales exhibited continued growth. Thus although 
the energy production rate was constant or increasing and the dissipation rate was 
decreasing, there seemed to be no net increase in turbulent energy. 

A resolution of this apparent paradox was suggested in CHC (1970), where it was 
speculated that the system had not yet reached its asymptotic state. Thus a larger 
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value o f  the dimensionless measure of time should find the turbulent energy growing 
in a fashion consistent with the growing scales. 

Ground work as well as ground rules for generating roughly homogeneous turbulent 
shear flow as found in CHC have been used in the present study to attain a linear 
mean shear of dcl/dx2 = 44s-1, nearly four times that obtained in the earlier cited 
work. Keeping the centre-line velocity identical to that in CHC (12.42 mls), it  was 
anticipated that the effective dimensionless time span available before the downstream 
end of the test section was reached would be correspondingly extended. This turned 
out to be the case, and the present work explores and resolves some of the fundamental 
questions left open by CHC because of a lack of development time, and confirms the 
suggestion described above. 

A still larger effective time could have been attained by lowering the mean speed, 
but the desire for a larger Reynolds number outweighed that change. Operating at 
the same speed also maintained negligible downstream boundary-layer effects without 
a change in the duct-wall configuration. 

A preliminary report was presented at  a meeting of The American Physical Hociety 
(Graham, Harris & Corrsin 1970). As a final comment, on references, we note that 
the published version (Mulhearn & Luxton 1975) of an earlier unpublished report 
(Mulhearn & Luxton 1970) omitted all data from the near-asymptotic region, a t  
relatively large dimensionless times. As a consequence, we have used the report rather 
than the final paper as a source of some comparative data. 

2. Analytical preliminaries 
Because the experiment to be reported here shows larger downstream inhomogeneity 

than the earlier case, yet retains the same degree of transverse homogeneity, it  is 
useful to record here the general forms of the velocity moment equations (see, for 
example, Townsend 1975; or Hinze 1975). The equations for mean mass and momentum 
balances are too familiar to require repetition of the general forms, but under the 
restriction of steady rectilinear mean flow, D2 = c3 = 0, so bhe mass balance for 
constant density in this idealized case reduces to 

aDl/axl = 0. (2.1) 

This means, for example, that Dl(x2) is the same at  all values of xl, the co-ordinate 
in the mean flow direction. 

With the added theoretical restrictions that dul/dx2 is a non-zero constant, that 
a~,/ax, = 0 and that all turbulence moments are transversely homogeneous (i.e. 
a(-)/ax, = a(-)/ax, = 0 ) ,  the mean momentum equations are 

ai-jlax, = -pd(U;)/dxl, (2.2) 

aPlax, = -pd(ii&)/aX1, (2.3) 

@lax3 = 0, (2.4) 

where B is the mean static pressure and p is the density. 
Integrating (2.2) and (2.3) partially with respect to x, and x2 respectively, we find 
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Comparison of these necessarily equal functions shows that 

(2.7) 
- 

d(uluz)/dxl = constant = c1 

and that the mean static pressure field has the form 

P = Fret - p 3 ( x 1 )  - pcl x,. 

The dependence of F on x1 seems plausible, because it is analogous to its dependence 
on x2 in rectilinear channel flow, for which turbulence moments vary with x2 but are 
independent of x1 (see, for example, Laufer 1950). On the other hand, the dependence 
of P on x2 in the present case seems less precedented. 

Equation (2.7) implies that the asymptotic state of this shear turbulence field will 
entail a linear growth of 1-1. It seems plausible that such an asymptotic state should 
also display constant local correlation coefficients or moment ratios: in particular, 
we should expect w z / ( u :  u;)* to be constant (CHC). If this is so, and if u;/u; = constant 
it follows that 2 and 2 will also grow linearly with xl. Of course, the mean 'force' 
balance in the x2 direction on a rectangular fluid volume requires that the x1 growth 
of the tangential force on faces normal to x1 be counteracted by an x2 difference in 
the normal force on faces normal to x,. 

If an evolving quasi-asymptotic state exists, it  would be expected to have fixed 
ratios of all three component energies, so we expect 3 also to grow linearly 
with xl. 

The general balance equation for the mean flow kinetic energy per unit mass 
E = +Ui Us is 

-- - -  

- _  

Terms not physically described in CHC are the second, which is the mean flow con- 
vection of mean flow kinetic energy, the fifth, which is the mean pressure-gradient 
work rate, the sixth, which is the energy increase due to the viscous work rate, and 
the seventh, which is the dissipation rate. 

For rectilinear homogeneous shear flow, (2.9) reduces to equation (2.3) of CHC. 
For steady rectilinear shear flow with a fixed mean velocity gradient dVl/dx2, plus 
postulated transverse homogeneity but possible downstream changes in turbulence 
properties (nearly the experimental case), (2.9) reduces a t  once to 

It turns out that these terms just cancel each other in pairs. Because (by postulate) 
a(u~uz)/ax,  = 0, the loss to turbulent energy is exactly balanced by the turbulent 
transport of E in the -x ,  direction. By virtue of (2.2), the pressure-gradient work 
rate term is exactly balanced by the turbulent transport of E in the x1 direction 
(which happens to be the work rate due to the 'Reynolds pressure'). Finally, the rate 
of viscous transport of E down the E gradient exactly cancels the direct viscous 
dissipation rate, so (2.10) degenerates to 0 = 0. 
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The turbulent energy equation (Reynolds 1895; see, for example, Rotta 1962) 
reduces to 

- 
(2.11) 

ae -au, a _. i a - a2 - - 
ax, ax2 ax, P 8x1 ax; 

g - =  - u1 u2 (ul e )  -- - ( u l p )  + v- (e +u:) - e. 

Here e = uk, p is the fluctuation in static pressure and 

is the mean turbulent dissipation rate. Under the postulated restriction that all 
turbulence moments (including dissipation) are independent of x2 and x3, we have 
taken 

It is immediately clear that (2.11) is not a proper equation because the left side 
depends on x2 (and possibly on 2,) while (by postulate) no terms on the right side 
depend on x2. The inevitable conclusion is that a flow of the type postulated in this 
analysis (steady rectilinear mean flow with constant velocity gradient dgl/dx2, plus 
transverse homogeneity of turbulence moments) is impossible. The stationary flow 
cannot be homogeneous, not even transverse1y.t 

A qualitative explanation can be extracted from comparison of the energy down- 
wind histories in neighbouring x,, x3 slabs of fluid. Suppose that exact transverse 
homogeneity exists a t  x1 = xl0, so that (2.11) is valid locally. Write (2.11) in the form 

( 2 . 1 1 ~ )  

where B (energy production rate), 71 (turbulent transport rate parallel to x,) and e 
(dissipation rate) are ‘initially’ (i.e. at  x1 = xl0) independent of x2. Clearly it is the 
x2 dependence of the mean flow convection speed gl which tends to destroy the 
lateral homogeneity. 

In  order to estimate the seriousness of this effect in the present case (from the 
CHC data we see that it was negligible at  the smaller strain rate), we consider a 
‘worst ’ hypothetical case, in which B dominates the right side of (2.11 a).  Then 

(2.12) 

with the assumed upstream condition ii?(xl0,x2) = Eo = constant. Assuming that the 
field is sufficiently well developed to allow the proportionality 

- 

(2.12) becomes 
= AE ( A  = constant), (2.13) 

(2.14) 

t It is instructive at  this point to recall the complementary conclusion reached earlier 
(CHC 1970) that a perfectly homogeneous shear flow cannot be stationary in time. 
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For each fixed x,, we integrate ‘partially ’ with respect to x,, obtaining 

(2.15) 

which neglects transport in the x,  direction. The ‘function of integration’ is zero. 
In  order to estimate how far downstream from xl0 the transverse energy gradient 

may become appreciable, we compute where it reaches equality with the streamwise 
gradient. Forming &//ax, from (2.15), we find 

(2.16) 

Thus the transverse gradient would grow to be the same order as the streamwise 
one at a distance 

X I -  Xl0 % i7 1% 
ax, 

(2.17) 

downstream of a transversely homogeneous position. In the present experiment this 
is roughly 30 cm (compared with turbulence integral scales of order 2-4 cm). 
Our inferences are (a )  that a turbulent shear flow which satisfies (2.11) exactly 

cannot exist and ( b )  that at least the 2, transport terms must be restored if the x,  
terms are kept; i.e. instead of (2.11), we must use 

- 
- aa -au, a a -  i a  

axl dx,  ax, 8x2 P 8x1 
u - M -u1u2--- (zl,e) -- (u2e) - - - (zl,p) 

(2.18) 

We shall see ($4.8)  that in the experimental flow both turbulent and viscous 
transport of turbulent energy are negligible. Hence the operative approximate 

(2.19) 
equation is simply C1 aqax, w - u i i ,  d i 7 , p ~ ,  - 8. 

Correspondingly, the component energy equations are 

(2.20) 

where 

(2.21) 

(2.22) 

To the same approximation, the balance equation for Reynolds shear stress (Chou 
1945) is - a  - u - ( - U 1 U 2 )  % U , - - -  

ax, 
(2.23) 

Here the viscous term is expected to be negligible a t  large enough Reynolds numbers 
(CHC 1970). 
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To extract from the equations of motion some inference about the downstream 
growth rate of integral scales of the velocity field, we might examine a basic integral- 
scale equation, e.g. that given by Rotta (1951). In  effect, he derived this equation 
by integrating the two-point velocity covariance equation over all space separations. 
Inspired by the isotropic case, where the concept is unequivocal, he defined an integral 
length scale which is a local function of position: 

where b ( k ,  t ;  x) is the 'three-dimensional' spectrum of turbulent kinetic energy, i.e. 
the spherical-shell integral of the spectral energy density in wavenumber space. 
k is the magnitude of the wavenumber. A similar differential equation for a growth 
rate L, can be formed by integrating the homogeneous shear-flow correlation equation 
as given by Reis (1952)' Craya (1958) and Burgers & Mitchner (1953). However, 
there remain terms which are neither measured nor well estimated by existing theory, 
so that exercise is better left for the future. 

3. Experimental apparatus 
3.1. The wind tunnel and shear-turbulence generator 

The shear-turbulence generator employs the same technique as that used a t  the 
smaller strain rates (CHC 1970), and the wind tunnel is that used by Rose (1966) 
and CHC. The shear generator consists of parallel channels of equal width with 
adjustable internal resistances. The greater mean shear was obtained by using a 
greater range of screen resistances. Up to four screens spaced 1-9 cm apart were used 
in each channel. The 12 channels are each 61 cm long, with aluminium walls 0.318 cm 
thick spaced at  2.54 cm, between their centres. There is a 0.318 cm square splitter rod 
along the centre-line of each channel exit plane, to reduce the Iength and time scales 
of the initial turbulence. Once again the mean velocity gradient was set by trial and 
error through the arrangement of the numbers and resistances of the screens in each 
channel. The finest mesh screens had to be mounted on frames under tension in order 
to ensure that they remained plane. 

The increased resistance gradient (compared with the experiment a t  a smaller 
strain rate) caused such large streamline slopes upstream of the shear generator that 
'droop snoots ' had to be added to several of the flat plates in order to prevent leading- 
edge separation. 

A moderate degree of uniformity was attained (see figure 1).  The foregoing gave a 
mean gradient of 44 s-l (compared with 12.9 s-l in CHC), with a centre-line mean 
speed of 12.4m/s, the same as in the earlier case. As before, the turbulence tends 
towards transverse uniformity as the 'grid-generated ' turbulence decays and the 
'shear-generated ' turbulencs dominates. A shear-dominated flow of acceptable trans- 
verse homogeneity is attained by Xl/h = 7.0 (see figures 2 and 3). The interim condition 
with a minimum in turbulent energy is passed a t  z , /h = 3.5. At the smaller strain 
rate (CHC), this region occupied the downstream 25% of the test section, being 
reached a t  z l /h  = 8.5. The use of straight-line segments in figures 2 (a)-(c) represents 
only an aid to the eye, not a suggestion of the actual profiles. Since our interest was 
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in only an asymptotic state, few data were taken in the region x,/h < 7.5. These few 
upstream data (not presented) showed slight residual non-uniformity in apl/ax, a t  
x,/h = 3.5, with a section average equal to the downstream value of 44 s-l. 

3.2. Instrumentation 

Initially the mean velocity was measured with an array of Pitot tubes and later, after 
fine adjustments had been made, with a hot-wire anemometer. 

By and large, experimentation was performed with equipment similar to that used 
in CHC (1970), so the equipment will be described here only briefly. Mean and fluctuat- 
ing velocities were measured with DISA 55D01 constant-temperature anemometers, 
together with DISA 55D10 linearizers. As before, calibration was performed in the 
known flow in the wind-tunnel test section without the shear-turbulence generator. 
Root-mean-square fluctuating voltages were measured with a DISA 55D35 r.m.s. 
voltmeter. Transverse-component fluctuations u2 and u, were measured with a 
standard hot-wire X-array, with sensitivity calibrated by yawing the probe & 5’ in 
a plane parallel to the ‘X  ’ in the empty wind tunnel. Air temperature was monitored 
with a thermistor bridge system, and was kept constant enough to avoid the need for 
corrections in velocity measurements. 

Two-probe spatial velocity correlations, both with and without time delay, were 
measured with a PAR Model 101 Correlator. Correlation print-out was performed by 
a Hewlett-Packard Pen Chart Recorder. Correlation coefficients for zero time delay 
were mostly extracted from these graphs by reading the 7 = 0 value of the correlation 
curve as well as the two corresponding autocorrelation values of the signals. Some 
measurements for zero time delays, however, were performed using the previous 
arrangement (CHC 1970), which employed a multiplier and integrator. There was no 
significant disagreement. 

The traversing mechanism was the same as that used by CHC (1970), and had been 
developed by Kellogg (1965). Most of the single-wire probes were made in the laboratory 
and had a 0.635 cm diameter stainless-steel shaft, with wire supports made of jewellers’ 
broaches encased in Nuweld dental cement. The hot wires were 0.00038 cm tungsten 
with copper-plated end supports and bare sensing portions 0.1cm long. For some 
measurements performed with X-arrays, use was made of DISA gold-plated X-meters. 

4. Measurements : homogeneity and downstream development 
4.1. Transverse homogeneity 

Figure 1 presents mean velocity profiles Ul(x2) at three downstream distances zl from 
the turbulent shear flow generator. h = lZin., the height of the (square) test section. 
The straight lines all correspond to dal/dx2 = 44.0 s-l, and demonstrate good constancy 
of this mean strain rate on the x3 = 0 mid-plane. The departures from this value in 
planes 5 = f 3 in. on either side did not exceed 3 yo. The centre-line speed is 

= 12.4m/s. 

Figures 2 (a)-(c) show that the one-point turbulence moments are moderately 
homogeneous. The lines are drawn merely to connect the data points, not to represent 
estimated profiles. Departures from homogeneity in the x, direction are smaller by 
a factor of 4. A dynamically important measure of possible non-uniformities over 
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FIQURE 1. Comparison of mean velocity profiles at three downstream stations. 

- 
values is the associated energy production rate - u1 u3(i3D1/i3x3)-l. This was less than 

1 % of the dominant production-rate term - ~ ( 8 c I / i 3 x 2 ) - l .  On comparing these 
profiles with those a t  the smaller strain rate (CHC 1970, figures 8-10), we note the 
following. 

(a)  The ratio of the r.m.9. turbulent velocity to the centre-line mean velocity is 
considerably larger at the larger strain rate: ui/Dc = 4-5 % here for 7.5 < %/h < 11 ,  
as compared with 1.8 % at the smaller strain rate (CHC, figures 8-10). Since U, cannot 
be an important parameter far downstream (because after the generation details 
have been ‘forgotten ’ the field dynamics cannot change under Galilean transformation), 
it is more appropriate to say simply that the turbulent r.m.8. velocity is larger at the 
larger strain rate. 

> 2 in both cases, but the latter inequality is stronger at  the larger 
strain rate and strain of the present experiment. At dUl/dx2 = 44.0 s-l and 

( b )  2 > 

(x1/Oc) dD1/dX2 = 11.9, 
-- _ -  

ug/ut = 1-46, whereas a t  dQJdx, = 12.9s-l and (xl/q)dDl/dx2 = 3.49, u:/uE = 1.17 
(CHC) . 

(c) The Reynolds shear stress correlation coefficient is approximately the same in 
the two cases (0.47 < - u1 u,/u; uh < 0.50). 

It should be noted also that the small decrease in homogeneity between x,/h = 9.5 
and 11.0 is in the direction predicted by the discussion in 5 2, viz. smaller relative 
turbulent energies in the faster-moving regions at  any constant xl. 

We have too few values to merit the drawing of profile curves, but the degree of 

- 
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FIGURE 2. Mean velocity and streamwise r.m.8. turbulent velocity profiles at (a)  z,/h = 7.5, 
(b)  zI/h = 9.5 and (c) z,/h = 11.0. ui, ui and shear-stress correlation coefficient measured on 
centre-line only in (a), but full profiles in (b)  and (c). uc = 12*9m/s is mean velocity on centre-line. 
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FIQURE 3. Downstream development of turbulence component energies and shear-stress correla- 
tion coefficient along tunnel centre-line. +, cross-stream averages from figures 2 ( b )  and (c) .  

transverse homogeneity of the streamwise integral scale L, of the streamwise turbulent 
velocity u1 was measured to be f. 5 % over the central half of the airstream. The Taylor 
microscale A, was about as homogeneous transversely as the r.m.8. turbulent velocities, 
i.e. within f 5 %. 

4.2. Downstream development 
Figure 3 confirms the expectation (CHC 1970) that, with scales growing in the presence 
of a constant mean velocity gradient (see figure 4), the magnitudes of the Reynolds- 
stress components, including the turbulent energy, must grow also. The values of 
u1 u&I u;, though badly scattered, seem to have attained an asymptotic value well 
before the turbulent energies. This correlation coefficient is the normalized form of 
the primary statistical quantity 'added' to the turbulence structure by the mean 
strain rate, and we hope for a constant asymptotic value. A very weak dependence 
on the Reynolds number,? which increases with zl, would not be surprising. Perhaps 
there is a non-zero asymptotic value of w / u ;  US, as R, -+ co; presumably such a value 
would be approached closely when R, is large enough to permit an extensive isotropic 
inertial subrange in the spectrum (Corrsin 1958; Bradshaw 1967), as postulated by 
Kolmogorov (1941) and Oboukhov (1941) and confirmed experimentally by a number 
of investigators (see, for example, Monin & Yaglom 1971, 1975). 

Although the data points in figure 5, some recorded as much as two years apart, 
show considerable scatter, there is a plausible degree of linearity in the downstream 
growths of all three component energies, a behaviour conjectured in the paragraph 
preceding (2.9). 

t Defined at the end of $4.4. 

- 
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FIGURE 4. Downstream development of ‘ longitudinal’ integral scale and Taylor 
microscale. Comparison of higher-shear (present) case and lower-shear (CHC) case. 

Figure 4 shows that the ‘longitudinal’ integral scale L,, inferred from the extra- 
polated zero-frequency intercept of the one-dimensional spectrum (see, for example, 
Comte-Bellot &, Corrsin 1971, appendix E), continues to grow. 

In  contrast to the low-shear case, the Taylor microscale (figure 4) shows no down- 
stream growth. It was measured primarily by fitting a vertex-osculating parabola 
to each temporal autocorrelation curve for u,, a t  a fixed space point. With the Taylor 
approximation,t the autocorrelation for a time interval At a t  a fixed point is very nearly 
equal to the space correlation for a distance Axl = Dl At. The parabola fitting was 
done on a log plot in the manner of Rose ( 1966). As partially independent confirmation, 
some values were measured by differentiating the u1 signal with respect to time and 
again invoking the ‘Taylor approximation’, this time in the form a/at = - gl 8/8xl, 
for a fixed probe. A, is related to aul/axl by Taylor’s definition 

(au,/axl)2 = 2(iq/A2,). 

4.3. Mean static pressure$eld 
Equation (2 .8 )  shows that, in the case of a perfectly rectilinear mean flow with exact 
transverse homogeneity [a condition which cannot be maintained downstream, as 
we have seen from (2.15)], the mean static pressure will vary with both downstream 
position and transverse position along the gradient direction. In  dimensionless form, 

t For more details, see Lumley (1965) and Comte-Bellot & Corrsin (1971, appendix D). 
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Substituting experimental values for the terms on the right side (table 3, $4.7)’ 
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X sf = -5 .4  x 104+ 1-9 x 10-42 a t  xl/h = 11.0. 
& P G  h 

It is evident that the mean static pressure differences should be very small compared 
with the centre-line dynamic pressure. Readings from static pressure taps on the 
test-section wall gave order-of-magnitude confirmation. The mean speed on the 
centre-line was constant over 7.5 < xl /h  < 11.0, to within the experimental scatter, 
so the effect of boundary-layer growth was negligible. 

4.4. Accommodation of the low-shear and high-shear cases 
Since the mean strain rate dul/dx2 is a dimensional quantity, there is, of course, no 
such thing as a ‘low’ value or a ‘high’ value intrinsically. A principal purpose of 
increasing the value of dul/dx2 in the experiment was to attain a larger dimensionless 
development time 7 within the same downstream distance x1 from the generator. 
We expect that (du1/dx2)-l is a characteristic time of the flow,? so 

x1 dul  
Uc dx, ’ 

T E = -  (4.3) 

where uc is the value of ul on the test-section centre-line. 7 represents dimensionless 
downstream distance and total strain as well. 

In  order to bring the downstream growth of the mean-square turbulent velocity 
in figure 3 into consonance with the corresponding property of the low-shear experi- 
ment, we should also like to rescale the turbulent energy itself. Using only ‘externally 
imposed ’ parameters, we can construct a (component) dimensionless energy 

where q2 = G. This measure, plotted against the dimensionless distance (or time) 
of (4.3), reconciles the two experiments. However, h ( =  1ft) is not a parameter 
genuinely imposed on the turbulence because the boundary effects are, by design, 
negligible. In fact, a principal goal of this experiment is to avoid an externally imposed 
local characteristic scale.$ Furthermore, oc is not a key velocity measure, as explained 
earlier, because it is not invariant under Galilean transformation. 

Thus a more meaningful scaling of q2 might be 

q2 
L2,(dUl/dx,)2 (4.5) 

This is plotted on figure 5, where we see the reconciliation of the low-shear and high- 
shear experiments. It also confirms our conjecture (CHC 1970) that the low-shear 
experiment had not come very near to an ‘asymptotic state’ at the downstream end 
of the wind-tunnel test section; it had just reached a region of minimum energy, 
where the rate of decay of the generator turbulence has just been balanced by the rate 
of production due to the general shear. 

For more detailed structure analysis, a combined time which includes both mean and 

$ Of course the generator imposes an initial scale through its slot width, but this merely gives a 
fluctuation effects is doubtless more appropriate [CHC, equation (5 .5 ) ] .  

starting value from which the scale grows freely in the far-downstream, asymptotic region. 
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FIGURE 5. Reconciliation of downstream development of turbulent energy in high- and low-shear 
(CHC) experiments. Abscissa is total strain memured from exit of shear generator. 

The L, wg. x,/h behaviour (figure 4) evidently needs no rescaling to reconcile approxi- 
mately the low-shear and high-shear cases. Accepting the idea that the generator 
‘mesh size’ imposes the same initial values on the integral scales in the two cases, 
should we be surprised that the growth rate of the integral scale seems to be indepen- 
dent of the mean strain rate, although the energy level (and presumably the energy 
growth rate) depends on i t? Indeed the result (which may be only approximate; some 
weak dependence on dul/dx2 may exist) is a little surprising, because the mean straining 
certainly stretches fluid blobs in the direction of its ‘positive’ principal axis; on the 
other hand, it squashes them in the direction perpendicular to this. 

Perhaps we may associate the growth of the integral scale with a diffusive process 
[in a constant-gradient scalar field embedded in isotropic turbulence (Corrsin 1952; 
Wiskind 1962) this is certainly appropriate]. However, the larger ‘turbulent diffusivity 
(proportional to u; L,) in the high-shear case would then give more rapid growth, 
which is not observed. 

As an alternative, a spectral dynamic explanation should be sought: a generaliza- 
tion of a simple model which reproduces Kolmogorov’s energy decay and scale growth 
estimates for isotropic turbulence (Comte-Bellot & Corrsin 197 1) .  

Reconciliation of the behaviour of the Taylor microscale for the two shear flows 
should be sought via exploration of either the mean-square turbulent vorticity or 
the mean strain rate. At the larger mean strain rate, however, it is less likely that these 
quantities can be approximated by their isotropic forms [e.g. equation (2.12) of CHC 
197071. For example, we may expect the vorticity amplification term ~ 2 d ~ l , / d x ,  to 
be appreciable. Lacking data on F2, we must be content with trying to reconcile 
only the ratios of the Taylor microscale to the integral scale. A dimensionless product 
which has generally shown less variation than its individual factors is (h/L) R,. For 

t Two coefficients are misprinted in the correlation function form there, equation (2.13). 
For the correct coefficients, see equation (5.5.8) in the monograph of Batchelor (1963). 
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FIGURE 6. Reconciliation of downstream development 
of turbulence Reynolds number. 

isotropic turbulence, the complete similarity assumption of von Ktirmttn & Howarth 
(1938; for a more complete discussion, see Hinze 1975) predicts that this product is 
constant during decay; Batchelor (1953, figure 6.1) has shown the approximate 
empirical constancy of a closely related quantity. More recent experiments on nearly 
isotropic turbulence (Comte-Bellot & Corrsin 197 1) agree. 

Even in turbulent shear flows away from boundaries this quantity tends empirically 
to fall in a range between perhaps 15 and 35. Its relevance in shear flow can be ration- 
alized roughly for cases in which transport of turbuIent energy is of secondary import- 
ance. If we can assume that the production rate is proportional (though not necessarily 
equal) to the dissipation rate, and assume isotropic dissipation, 

- Tip& dU1/dX, N V ( ~ ) * / h : .  (4.6) 

Then if u i i  N u Z ,  if (w)f - ui - L, d ~ , / d x , t  and if the mean-square turbulence 
components are proportional to each other, (4.6) becomes 

as in isotropic turbulence. Figure 6 presents the downstream growth of R, and figure 7 
the product (h,/L,) R, as a function of rescaled downstream distance; neither shows 

t Essentially a mixing-length type of proportionality, proposed by Prandtl (1925). Of course 
the mixing length is more of a Lagrangian scale concept, so we add the assumption that the 
Eulerian integral scale is proportional to the Lagrangian one. 
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FIGURE 7. Test of a relation sometimes used to estimate the scale ratio. 

TABLE 1 

any serious contradiction between the two cases. It is evident here as well as in figure 
7 that the data for the small strain rate are all in the development region. Here 
RA = (A/v)  [&-]B. We have assumed the isotropic relation between microscales, viz. 
A, = 2BA, in computing RA. 

In the asymptotic region, (AJL,) RA is roughly 25-30, and may be decreasing slowly. 
To compare this value with that measured for isotropic turbulence [(h/L) RA x 29, 
Comte-Bellot & Corrsin 197 13 we may also invoke the isotropic integral-scale relation 
2L = L,. For isotropic turbulence, then, the empirical value is (A,/L,) RA x 20, not 
too far from the range 25-30 in this shear-flow experiment. 

4.5. Measures of downstream inhomogeneity and of non-stationarity 
in a convected frame 

Table 1 presents some dimensionless measures of downstream inhomogeneity. Since 
these are all much smaller than 1.0, we conclude that the spatial homogeneity is good 
in the downstream direction as well. 

In  contrast, there is appreciable non-stationarity in a frame translating with the 
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Choice of T . . . 
TUG dL, 

TUG dh, 

T = T@ = 0.01358 T = TE x 0.061 8 

0.116 0.52 -- 
Ll d% 

0.0094 0.042 

T UG diiiid 
0.207 0.94 -- 

dxl 

0.0013 0.0059 

TABLE 2 

centre-line mean speed, as a t  the smaller shear (CHC 1970). After we have decided 
upon an appropriate time scale T ,  we look at stationarity criteria like 

If we select as the characteristic time 

we find a t  x,/h = 11.0 the values in the first column of table 2. The first, second and 
fourth values are not significantly worse than those in the smaller-shear experiment, 
which was not 'fully developed' (CHC). But the third shows appreciable departure 
from stationarity in the turbulent energy. 

If we select as the characteristic time the integral time scale of R,, in the UC-convected 
frame (the envelope curve of figure 15 extrapolated with a simple exponential function 
0.665 exp [ - 0.266 du,(At)/dx,]) ,  i.e. 

TE = IOm Rll(uc At, 0,O; z , ,At)  d(At)  ( FZ 0.061 sa t  x,/h = 7 4 ,  (4.10) 

we find severe non-stationarity in both the turbulent energy and the integral scale. 
It is a bit disconcerting that Ta and TE differ by a factor of 4.5. The inequality 

prompts us to see whether the basic Eulerian velocity integral time scale TE is related 
to the Eulerian velocity and integral length scale in roughly the same proportion as in 
isotropic turbulence (Comte-Bellot & Corrsin 197 1) .  In  (decaying) isotropic turbulence 
it was found that [ & G I 4  TE/L1 w 1.67. In  the present experiment, picking velocity 
and length scales a t  the upstream point of the R,, measurement, as in the isotropic 
calculation, gives [ + G I 4  TE/L, M 1.81, roughly the same value. 

Parenthetically, it should be recalled that, if the isotropic turbulence field is 
rescaled to ' correct' for decay and scale growth, the dimensionless product is 0.78. 

t Essentially equation (5.5) of CHC (1970). 
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4.6. The intensity or ‘strength’ of the turbulence 
As remarked earlier, the turbulence level u@,, in this experiment is appreciably 
larger than that a t  the smaller shear (CHC), but that cannot be a significant measure 
of turbulence ‘strength’ because it changes under a Galilean transformation, which is 
unacceptable if the boundary and upstream (‘initial ’) conditions are unimportant. 
The dimensionless ratio plotted in figure 5 is a measure which i s  invariant under 
Galilean transformation. 

In a sense, turbulence Reynolds numbers are measures of vigour. Figure 6 shows 
the values and downstream growth of a Reynolds number based on the transverse 
Taylor microscale. The value at the downstream end of the test section is a fairly 
typical value for a small laboratory experiment.? It is probably insufficient for the 
existence of an isotropic inertial subrange in the sense of Kolmogorov (1941; see also 
Corrsin 1957,1958), and may not even be large enough to permit the use of an isotropic 
estimate for the viscous dissipation rate. Bradshaw (1967) might disagree. Un- 
fortunately, there has not been sufficient time to measure the degree of local isotropy 
in detail. 

Another measure of the strength of the turbulence in a shear flow is the ratio of its 
root-mean-square strain rate or vorticity to the corresponding quantity in the mean 
motion. For comparison with values published earlier (CHC), we use (+)* as a measure 
of the r.m.8. strain rate or vorticity, and find at s,/h = 11.0 

(4.11) 

Within the experimental accuracy this is equal to the value of 9.8 measured at the 
smaller shear. 

Still another measure of strength is the ratio of ‘turbulent viscosity’ to molecular 
viscosity ; 

(4.12) 

which is larger than the value of 90 observed a t  the smaller shear and is close to the 
value of 200 computed from turbulent boundary-layer data (Klebanoff 1955; CHC) 
half-way from the wall to the free stream. It should be reiterated that the (all too 
common) use of a turbulent viscosity, or some other gradient transport assumption, 
in the ‘classical’ turbulent shear flows is wrong in principle because one or more of 
the following three necessary conditions is normally violated. 

(a) The length scale of the transporting mechanism must be very small compared 
with the distance over which the mean value of the property being transported has an 
appreciable difference in value (Batchelor 1950). 

( b )  The time scale of the transporting mechanism must be very small compared with 
the characteristic times (if any exist) of the mean fields. 

(c)  For momentum transport, the mean (Reynolds) stress tensor { - wu,)-must 
have its principal axes parallel to those of the mean strain-rate tensor {aD{ /aXk  + at&/axi} 

(Corrsin 1957). 

The largest value shown in figure 6 for the small-shear experiment (CHC) is a numerical 
correction of the value of 130 given in equation (5.7) there. A referee has suggested that U; WU 

accidentally used there instead of $-. This seems likely, 

23 F L m  81 
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oc = 1240cmls 
ui = 64.1 
U ;  = 40.4 

- u; = 49.5 
oc du:/dx, = 1-96 x lo4 cma/sS 
Vcdu:/dxl = 0.88 x lo4 
ocdu:/dx,  = 1.32 x lo4 

- g c d ( i Z i & / d x l  = 0.62 x lo4 

- 
- 

TABLE 3 

do, /dxa = 44.0s-1 
-ulu, = 1217cma/sa 

- U , / U ; U ;  = 0.47 

L, = 2. lcm 
A, = 0.29 om 

dL,/dx,  = 0.0148 
dA,/dx, = - 1.07 x 

E = 3.28 x 1O4cma/sS 

Requirement (a )  is violated by all traditional turbulent shear flows, although it is 
satisfied by the deliberately created ‘homogeneous’ ones (Rose 1966 ; CHC). Require- 
ment ( b )  is violated by all known turbulent shear flows, including the present one. 
Requirement (c) is roughly satisfied in ‘free’ shear flows such as jets and wakes but 
violated in channel and boundary-layer flows (Corrsin 1957) and in homogeneous 
shear flow (CHC; see also 9 5 of this paper). 

The fact that analytical gradient-transfer computational models can be forced to 
give good agreement with experiment for some flow properties (see, for example, 
Kline et al. 1969) in no way confers scientific validity on such assumptions. Further- 
more, any empirical confidence such models may engender as pragmatic engineering 
‘prediction’ tools may be proved false with the next unorthodox application.? 

4.7. Turbulent energetics and the mean stress tensor 

It appears that the turbulence has attained an asymptotic state just at the down- 
stream end of the test section, where 7 = 11-12. Table 3 summarizes some numerical 
values for this region, estimated from faired curves. Substitution of the appropriate 
quantities into the approximate form (2.15) of the turbulent energy equation provides 
an estimate of the turbulent dissipation rate: 

8 = 3-28 x 104cm2/s3. 

An indication of the degree of anisotropy in the dissipative part of the spectrum is 
given by the contrasting value computed under the assumption of local isotropy: 

eI = 10 vwUk/h? M 2.5 1 x 1 O4 cm2/s3.$ 

The directions of the principal axes of the mean turbulent (Reynolds) stress tensor 
{ - UijJ are 

a, = $tan-l __ = - 22.3”, 67.7’, [:Ed (4.13) 

which are very nearly the same as in boundary-layer and channel flow, but quite 
different from the wake and jet cases (Corrsin 1957). The directions of the principal 
axes of the mean strain-rate tensor (aVi/azk + $&/axi} are, of course, f 45’. 

t For a more recent and extensive discussion, see Corrsin (1974). 
$ A referee points out that a popular semi-empirical estimator of the dissipation rate, 

cII = (+=)# L,, gives 2.67 x lo4 cma/sa. 
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The two principal stresses in the xl, x2 plane are 

The third is simply - 
- cc = - ui = 2454 cm2/s2. 

(4.14) 

(4.15) 

The ratio a , / c b  is 4.1, close to values computed from boundary-layer and channel 
data, namely 3-4 and 3-5 respectively (CHC). This is another indication that the 
turbulence in this flow is closer to that in traditional shear flows than was the smaller- 
shear experiment, where c&b = 2.3. 

4.8. The pressurefstrain-rate tensor 

The component energy equations and shear-stress equation [(2.20)-(2.23)] allow 
estimation of the physically important tensor 

Pik p (  aui/axk + auk/axi). (4.16) 

Its components give intercomponent energy transfer and destroy shear stress. 
Unfortunately, there was insufficient time to measure the component dissipation 
rates, or the viscous term which has been dropped from (2.23). Therefore, in order 
to estimate (4.16) from (2.20)-(2.23), we just assume local isotropy over the spectral 
region which governs the second moments of first derivatives (an inaccurate assump- 
tion in this experiment, as we saw by comparing e with el): ql) w q2) M qd w 46. 

Then (2.20)-(2.23) give component estimates 
- - 

i au, - aq,) -aul e 

P 8x1 ax1 ax2 

1 au, - aq2, e 
-p- w uc-+-, 
p ax, ax1 3 

1 au, - &(,) e 
- p -  w u,- f- 
p a ~ ,  ax, 3' 

1 au, au, - a(-) - d B  

- p -  w U,-fu,u2-f3, 

- 

- 

-+- w u, ----+u22. 
P - p (  8x2 8x1 ) ax, adz2 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

The turbulent transport of turbulent energy (gradients of triple covariance terms) is 
negligible. For example, f r o m 2  data (Harris 1974), we estimate the ratio 

The viscous transfer of turbulent energy is even smaller, as can be inferred from (4.12). 
Then our experimental numerical estimates for the components of the pressure/ 

velocity-gradient tensor are 

(4.21) 

23-2 

-6.56 6.55 0 

0 0 3.50 P 
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One principal axis is, of course, in the x3 direction. Analysing the two-dimensional 
tensor corresponding to components in the xl, x2 plane, we get principal-axis directions 

a, x - 26.9', 63.1', (4.22) 

which are approximately parallel to the axis of the turbulent stress tensor. 
The principal values of p - l q k  are 

p - 1 ~ ~  = - 9.88 x 104, p - 1 ~ ~  = 6.38 x 104, p - 1 ~ ~  = 3-50 x 104, (4.23) 

ell in cm2/s3. 

4.9. Test of the linear intercomponent energy transfer hypothesis 

As a first approximation, Rotta (1951, 1962, 1972) suggested that, in the absence of a 
mean strain rate, the intercomponent energy transfer rate may be simply proportional 
to the departure from equipartition. In  the presence of a mean strain rate, however, 
the static pressure fluctuation depends in part on this mean motion, and he suggested 
approximating the resulting additional expression by the value it would have in 
isotropic turbulence. This rough estimate turns out to give a zero contribution to the 
intercomponent transfer rates, resulting in a simple linear intercomponent transfer 
estimate for all turbulent flows. 

Formally, the solution of the quasi-Poisson equation for the static pressure fluctua- 
tion can be multiplied by the strain-rate fluctuation tensor and averaged (see also 
Chou 1945): 

u = u(x), u' = u(y), U' = q y ) .  

For this unbounded domain the surface-integral contribution to the solution has been 
omitted. It is negligible unless the integrand increases without limit at  infinity. 
There is no reason t,o suppose that this happens. 

The first integral in (4.24) arises from the part of the pressure fluctuation which is 
due solely to self-interaction of the turbulence; the second integral arises from the 
part of the pressure fluctuation which is influenced by the mean strain rate. For the 
first integral, which is the entire effect in non-straining flow, Rotta suggested the 
ad hoc form which makes the leading diagonal terms (i.e. the intercomponent energy 
transfer) simply proportional to the departure from equipartition, i.e. 

(4.25) 

with similar forms for 2p au,/ax, and 2p au,/ax3. Presumably C > 0, so that there is a 
tendency towards energy equipartition. 

The tensor form for ek which reduces to (4.25) for i = k = 1 is 

(4.26) 
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as proposed by Rotta. This gives an explicit form for the off-diagonal components 
(which destroy turbulent shear stresses), without the need for explicit physical 
speculation about their actual mechanisms. 

For a homogeneous shear flow, the second integral in (4.24) reduces to 

(4.27) 

where K,, = u,(x) u,(x + r) and r = y - x. Lacking a theoretical estimate of K,, 
in shear flow, Rotta (1972) suggested estimating (4.27) by using the form of K,, 
appropriate to isotropic turbulence. Hanjali6 & Launder (1972) and Lumley & 
Khajeh-Nouri (1974) have made more elaborate conjectures. Our goal in this paper, 
however, is to present and discuss new experimental data, not to test all interesting 
analytical hypothesis. We limit the comparison to Rotta's, and include that only 
because it was tested in the f i s t  paper in this series (CHC) and was presented too 
sketchily there, and also because the new data modify our previous conclusions. 

When the isotropic (von K k m h  & Howarth 1938) form of Ri, is substituted into 

a q  lu.u.-{l -aik}, 
-5 'ax, 

(4.27), it  reduces to simply 

(4.28) t 

which makes no contribution to the diagonal components of the intercomponent 
transfer of energy. It is therefore fair to say that Rotta's hypothesis for the transfer, 
even in turbulence which is being sheared, is (4.26). 

For the present flow, the data in laboratory co-ordinates give (a) different values 
of C for the three turbulent velocity components and ( b )  relatively constant values for 
C, and C, (at differing xl), but a widely varying value of C,. We find 

c, M 2.0, c, w 1.2, } (4.29) C, highly variable, ranging from 4 to 12 in the region 8 < x,/h < 11. 

These depart from each other considerably more than the corresponding quantities 
in the smaller-shear experiment (CHC): 1.5, 1-2 and 2.0. Presumably the values in 
(4.29) are more typical of fully developed turbulent flows so we conclude, in contrast 
to the earlier tentative inference, that the linear intercomponent energy transfer 
hypothesis is unlikely to be even a fair approximation. The uncertainty in C, is 
discussed below. 

To complete the test, we can inspect the equations analogous to (4.26) in principal- 
axis co-ordinates, ignoring the small misalignment between the axes of -- and 
&. In  principal-axis co-ordinates, the three ratios are C, w 2.2, C, M 1-4 and C, = C,, 
which approximately follow the trend in laboratory co-ordinates. 

Since the variability of the C's indicates serious departure from linearity in the 
intercomponent energy transfer rate, we might seek an empirical nonlinear dependence. 
Figure 8 displays the component energy gain rate as a function of energy deficiency, 
the functions on the left and right sides of the three component equations like (4.25). 
The data of the present experiment are supplemented by those for the weaker-shear 
case (CHC). The dashed line gives the results of Uberoi's (1957) data on the return 

t Although this is not proper tensor notation, it seems clear. { 1 - &} is zero when i = k and 
unity when i =# k. 



678 V .  B. Harris, J .  A .  H .  Graham and S .  Corr8in 

1.0 
u 

Energy 
gain 
rate O - 

/ 

0 0 /  

FIQURE 8. Test of Rotta's linear intercomponent energy transfer hypothesis. The energy gain 
rate is (pe)-l p aU,/azl ( j  not summed); the energy ' deficiency' is (+=)-I [$-- u;] (,i not 
summed). 
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towards isotropy of previously irrotationally strained grid turbulence, as computed 
by Rotta ( 1  962). From this figure we see that the energy transfer rates to and from 
2 and 2 (respectively) fall along a reasonably monotonic curve which can roughly 
include Uberoi's unsheared data. The transfer rate to 2, however, lies appreciably off 
this curve. Again, as in CHC, we recall the strange differences between 2 and 2 
computed by Deissler (1961) and Fox (1964) for homogeneous shear flow at small 
Reynolds number, by means of the covariance discard hypothesis. They discarded 
triple velocity covariances but kept pressure-velocity covariances in suddenly 
sheared isotropic turbulence. Their calculations give a healthy energy transfer from 

(and G?) to 2, but lack adequate transfer to $, with the result t h a t 2  dies out an 
order of magnitude more rapidly than the others. 

An inevitable conclusion is that the intercomponent energy transfers to (the 
component normal to both mean flow and gradient) and to 3 (the component along 
the mean velocity gradient) are qualitatively different.t This suggests that a primary 
goal of turbulent shear flow theories must be to account for the difference between 
these two intercomponent transfer rates. This suggests also that we should not expect 
a simple nonlinear dependence ofpau,/ax, (i = 1 or 2 or 3, not summed) upon 

Energy 'deficiency' 

- 

u1 u2 u3 

0 0 * Present work andCHC 

0 0 4 Mulhearn & Luxton 

- 

- 0 * Rose 

Uberoi 

- - - 
f It is, of course, not particularly surprising that u: is larger than both ut and us", because 

the energy is fed into 2 from the mean flow kinetic energy (Corrsin 1957). 
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FIGERE 9. Two-point correlation coefficients of u1 along the three Cartesian axes. 

(i not summed), except perhaps in the special case of unsheared turbulence. We shall 
expect the eventual explanation to possess at least two distinct parts, one reflecting 
a general tendency towards equipartition without regard for the mean velocity 
gradient field, the other a model of the different energy absorption by the deficient 
components along and normal to the gradient. 

5. Measurements : two-space-point correlations of velocities 
5.1. Autocorrelation 

Figure 9 presents data on the two-space-point autocorrelation coefficient function 
Rll(zl; rll r2, r3; 0) for the streamwise velocity for z1 = 7-5 h and r chosen successively 
along the three Cartesian co-ordinate directions. Like the corresponding data at 
smaller shear (and under non-asymptotic conditions, CHC), they show the following 
characteristic traits which distinguish their relative forms from those typical of 
isotropic turbulence. 

(a) The two transverse functions are quite different from each other. Rll(Ol r2, 0; 0) 
decreases more slowly, and shows no negative region. Rll(O, 0, r,; 0) reaches a con- 
siderable negative value, as it must in order that mass flow be conserved in the 
' correlation plane ' (0, r2, r3). 

(b )  Rll(r,, 0,O; 0) reaches larger negative values than those measured at smaller 
shear (CHC). 
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I .5 
I / 7 r ,  (in.) 

D space, R,  , = 0.4 

FIGURE 10. Isocorrelation contours of u1 in the plane containing the flow direction and the gradient 
direction. The triangle point was measured with a single hot wire and a delayed signal. The top 
of the R,, = 0.4 contour was sketched to have a familial resemblance. 

Possibly typical isocorrelation contours, for R,, = 0.5 and 0.4, are shown in figure 10. 
Unequivocally they show tilted oval shapes, qualitatively like those in traditional 
shear flows (see, for example, Sabot & Comte-Bellot 1972). One of the slightly puzzling 
properties of the smaller-shear case (CHC, figures 25, 44) was the nearly non-existent 
shear-induced 'distortion' of isocorrelation contours in the r,, r2 plane from a form 
appropriate to isotropic turbulence. If we assume that the unmeasured part of the 
R,, = 0.5 contour, for rl < 0 in figure 10, is antisymmetric with that displayed, there 
is a major axis of approximate symmetry, and it is tilted at about 13" to the x, axis. 

Figure 11 presents two typical isocorrelation contours in the r,, r, plane. Except 
for downstream growth effects in x,, these are presumably symmetric about both the 
r3 and the rl direction. Configuration details of our probe supports made it inconvenient 
to measure in the other three quadrants of this plane. 

5.2. Cross-correlation 

Since -- is the turbulent shear stress, it is interesting to measure the two-point 
correlation field RI2(rl, r2, r3; At) of u1 and uz. Figure 12 shows the results for zero 
time delay and space separations along each of the Cartesian axes. 

Qualitatively, the three functions are proportioned much like R,, (figure 9), showing 
a considerable negative loop with r3 separation. In perfectly homogeneous shear, only 
R,,(O, 0, r,; 0) of these three can be shown a priori to be symmetric by reflexion in a 
Cartesian-axis plane. Therefore we checked the degree of symmetry of R,,(O, r2, 0; 0) 
along the momentum transfer direction (figure 13). It is symmetric within the precision 
of the data: 
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FIGURE 11. Isocorrelation contours of u1 in the plane normal to the gradient direction. 

FIGURE 12. Two-point correlation coefficients of u1 and 
u2 along the three Cartesian axes. 

We note in passing that the transverse homogeneity of the field makes 

R12(O, - 7 2 , O ;  0) = R21(0,r2,0; 0). (5.2) 

The 0.2 isocorrelation contour in two quadrants of the rl, r2 plane (figure 14) appears 
to be a tilted oval, if we assume reflective antisymmetry in the r2 axis - an assumption 
which is less plausible for R,, than for Rll. With this assumption, a rough guess a t  a 
'major axis' gives it a tilt of 16' to the z1 axis. 
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x2 = 6.0 in. 

8 = 2.54 cm 

r2l8 

FIGURE 13. A test of the symmetry of R,,(O, T,, 0; 0) along the gradient direction. 

1 
Isocorrelation 

R,,  = - 0.2 

FIGURE 14. Isocorrelation contour of the cross-correlation of u1 and u, in 
the plane containing the flow direction and the gradient direction. 

6. Measurements : space-time correlations of velocities 
Especially in transversely homogeneous turbulent flows, the time statistical history 

in a frame translating with the mean velocity in the fluid layer of interest has a direct 
significance. In  the traditional turbulent shear flows such as boundary layers and jets, 
curvature of the mean velocity profile prevents simple a priori identification of the 
frame speed which will yield data with the simplest interpretation. 
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FIGURE 15. Two-point space-time correlation of u1 velocity, with two probes separated in 
streamwise direction. + , arrival time corresponding to the mean velocity U,. 

With two hot-wires probes aligned in the x1 direction and separated by a distance 
r,, we have measured the correlation of curves of 

with the upstream wire a t  x,/h = 7.5 (figure 15). This may be compared with figure 
2.2 of CHC, where the maximum attainable value of this dimensionless time delay 
(when the end of the test sectmion was reached) was only 0.90. Even with the larger 
strain rate, we still could not attain R,, < 1 within the usable test section. 

Figures 16 and 17 show a similar history for RZ2, which was not pursued as far down- 
stream, and - R12, which was. Evidently (R22)max drops off more rapidly with down- 
stream distance than does (Rll)max; and ( - R12)max is the most persistent of the three 
functions. This is displayed most clearly by the envelopes of the three families of 

R,, r,, 0,O; - =- 

curves (figure 18) when 

is normalized by R,,(O, 0,O; 0). 

Rik(rl, 0, 0 ;  At) occur essentially a t  At = rl/al. 

' G  ") ( ' x ,  u, 

With the uniform velocity gradient, it  is not surprising that the maxima of 

7. Concluding remarks 
Because of the unavoidable downstream growth of transverse inhomogeneity (0 2), 

it  seems unlikely that this tunnel technique for generating nearly homogeneous 
turbulent shear flow can be extended much further in terms of the total strain. 
Fortunately, it  appears that a quasi-asymptotic state has been reached. As seems 
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FIGURE 16. Two-point space-time correlation of u2 velocity, with 
two probes separated in streamwise direction. 
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FIGURE 17. Two-point space-time cross-correlation of u1 and u2, with two probes separated 
in streamwise direction. The dashed peaks indicate probe interference correlations required to 
give the (more accurate) single-probe value for 7 = 0. 

consistent with the moment differential equations (Q 2), this state is non-stationary in 
a frame convected with the centre-line mean speed Uc, with both turbulent energy and 
integral scales growing. The data indicate that roughly 7Q& - x1 and L, N xl, so the 
turbulence Reynolds number based on the integral scale RL, = (67Q&)J L,/v - x!. This 
corresponds theoretically to a Taylor microscale growth rate h N x$, and RA N xf. 
The A, data are too scattered to give clear support for the former. The Kolmogorov 
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FIGURE 18. Comparison of the envelopes of the space-time correlation functions in figures 15-17, 
hence the two-time correlation functions in a frame convected with the mean speed uc. R,, is 
normalized with its maximum value. 

microscale 7 = (v3/a)4 can be estimated from 7 = (15)-4R$A, whence 7 N xi*, a 
decreasing quantity. 

Because wavelike models surface from time to time in the theoretical turbulence 
literature (see, for example, Landahl 1967), it  is worth emphasizing the fact that in 
these flows with uniform mean velocity gradients the turbulence structures are 
merely convected with the gross motion of the fluid. This is in sharp contrast to the 
commonly accepted notion of a ‘wave ’ as a disturbance which has a characteristic 
propagation speed relative to the material in which it resides. Of course, when a 
rectilinear mean velocity profile is curved, there is no well-defined choice for ‘the 
mean velocity’ of the fluid associated with a turbulent structure (such as the two-point 
velocity covariance function); this fact alone virtually guarantees that a plausible 
choice of mean speed of the statistically defined structure will differ from a plausible 
choice of mean flow velocity for the fluid containing the structure. Such a velocity 
difference is not by itself evidence of dynamic wavelike behaviour. If wavelike models 
are to be justified, basic mechanisms for oscillation (especially the ‘restoring ’ forces; 
high Reynolds number flows have more than enough inertia to provide the necessary 
‘overshoot ’ mechanism) should be identified. 

Among the simpler attributes of turbulent shear flow which now seem sufficiently 
characteristic to warrant further study, both experimental and theoretical, are (a) 
the inequalities > 3 > 3, with the related phenomenon of ( b )  ‘pathologically’ 
effective transfer of turbulent kinetic energyfromq (and/orG?) to%, (c) the prominent 
negative region in R,,(O, 0, r,; 0 ) ,  contrasted with the absence of a negative region in 
Rll(0,r2,0;O), (d) the orientations of the principal axes of the stress tensor -uiuk 
and the pressure/strain-rate tensor p(aui/azk + auk/axi) and ( e )  the orientation of the 
oval isocorrelation contours of ve1ocity.t 

- 

t I n  an unpublished computational model of homogeneous, two-dimensional, turbulent shear 
flow, we found that the isocorrelation ovals tilted in the opposite direction. 
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The inequality 2 > 2 was observed also a t  the smaller strain rate and smaller total 
strain (CHC), but the inequality is especially strong at the larger strain rate: 

here compared with 1-2 in CHC. Such shear-generated inequalities should depend 
also upon the total strain, preferably measured from a hypothetical isotropic reference 
state. (xl/&.)dol/dxz, which is linear in the mean strain, is 3.14 times larger in the 
present case. Of course the experiment gives no clear choice of effective origin. 
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